

Please solve the following exercises and submit **BEFORE 12:00 pm** (noon) of Thursday 20th, November.

Exercise 1	(10)	points))
		_ /	-

Describe an algorithm that takes as input a list of n integers and produces as output the largest sum obtained by adding an integer in the list to the one following it.

Exercise 2

Describe an algorithm that takes as input a list of n integers and finds the number of integers greater than 7 in the list.

Exercise 3

Devise an algorithm to compute aⁿ, where a is a real number and n is an integer. [Hint: First give a procedure for computing aⁿ when n is nonnegative by successive multiplication by a, starting with 1. Then extend this procedure, and use the fact that a $^{-n}$ = $1/a^{n}$ to compute a^{n} when n is negative.]

Exercise	4
LACICIBC	_

Specify the steps of an algorithm that locates an element in a list of increasing integers by successively splitting the list into 3 sublists of equal (or as close to equal as possible) size, and restricting the search to the appropriate piece.

Exercise 5

Devise an algorithm that finds all terms of a finite sequence of integers that are greater than the product of all previous terms of the sequence.

Exercise 6

List all the steps used to search for 4 and for 10 in the sequence 1, 3, 4, 5, 6, 8, 9, 11 using **a**) linear search and **b**) binary search.

Exercise 7

Sort q, f, t, l, a, d showing the lists obtained at each step using a) bubble sort and b) insertion sort.

(10 points)

(10 points)

(10 points)

(10 points)

(10 points)

(10 points)

American University of Beirut Department of Computer Science CMPS 211 – Discrete Mathematics – Fall 14/15

Exercise 8

Describe an algorithm based on the binary search for determining the correct position in which to insert a new element in an already sorted list.

Exercise 9

Show that if there were a coin worth 12 cents, the greedy algorithm described in class using quarters, 12-cent coins, dimes, nickels, and pennies would not always produce change using the fewest coins possible.

Exercise 10

Show that a greedy algorithm that schedules a set of talks in a lecture hall by selecting at each step the talk that overlaps the fewest with other talks does not always produce an optimal schedule.

(10 points)

(10 points)

(10 points)